Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-944205.v1

ABSTRACT

SARS-CoV-2 breakthrough infection occurs due to waning immunity time-to-vaccine, to which the globally-dominant, highly-contagious Delta variant is behind the scene. In the primary 2-dose and booster series of clinical Phase-1 trial, UB-612 vaccine, which contains S1-RBD and synthetic Th/CTL peptide pool for activation of humoral and T-cell immunity, induces substantial, prolonged viral-neutralizing antibodies that goes parallel with a long-lasting T-cell immunity; and a booster (3rd ) dose can prompt recall of memory immunity to induce profound, striking antibodies with the highest level of 50% viral-neutralizing GMT titers against live Delta variant reported for any vaccine. The unique design of S1-RBD only plus multitope T-cell peptides may have underpinned UB-612’s potent anti-Delta effect, while the other full S protein-based vaccines are affected additionally by mutations in the N-terminal domain sequence which contains additional neutralizing epitopes. UB-612, safe and well-tolerated, could be effective for boosting other vaccine platforms that have shown modest homologous boosting. [Funded by United Biomedical Inc., Asia; ClinicalTrials.gov ID: NCT04967742 and NCT04545749]


Subject(s)
Breakthrough Pain
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.30.399154

ABSTRACT

In this report, we describe the initial development and proof-of-concept studies for UB-612, the first multitope protein-peptide vaccine against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen responsible for the Coronavirus Disease of 2019 (COVID-19). UB-612 consists of eight components rationally designed for induction of high neutralizing antibodies and broad T cell responses against SARS-CoV-2: the S1-RBD-sFc fusion protein, six synthetic peptides (one universal peptide and five SARS-CoV-2-derived peptides), a proprietary CpG TLR-9 agonist, and aluminum phosphate adjuvant. Through immunogenicity studies in guinea pigs and rats, we optimized the design of protein/peptide immunogens and selected an adjuvant system, yielding a vaccine that provided excellent S1-RBD binding and high neutralizing antibody responses, robust cellular responses, and a Th1-oriented response at low doses of the vaccine. Our candidate vaccine was then advanced into challenge studies, in which it reduced viral load and prevented development of disease in a mouse challenge model and in nonhuman primates (NHP, immunogenicity part is completed, challenge is ongoing). A GLP-compliant toxicity study has shown a favorable safety profile for the vaccine. With the Phase 1 trial ongoing in Taiwan and additional trials planned worldwide, UB-612 is a highly promising and differentiated vaccine candidate for prevention of SARS-CoV-2 transmission and COVID-19 disease.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Drug-Related Side Effects and Adverse Reactions
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.29.401984

ABSTRACT

Emetine is a FDA-approved drug for the treatment of amebiasis. In the recent times we had also demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. Following emergence of the COVID-19, we further evaluated the in vitro antiviral activity of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The therapeutic index of emetine was determined to be 10910.4, at a cytotoxic concentration 50 (CC50) of 1603.8 nM and effective concentration 50 (EC50) of 0.147 nM. Besides, we also demonstrated the protective efficacy of emetine against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment was shown to decrease viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 RNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. To conclude, emetine targets SARS-CoV-2 protein synthesis which is mediated via inhibiting the interaction of SARS-CoV-2 RNA with eIF4E. This is a novel mechanistic insight on the antiviral efficacy of emetine. In vitro antiviral efficacy against SARS-CoV-2 and its ability to protect chicken embryos against IBV suggests that emetine could be repurposed to treat COVID-19.


Subject(s)
COVID-19 , Amebiasis , Bronchitis , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL